Endothelial fenestral diaphragms: a quick-freeze, deep-etch study

نویسندگان

  • EL Bearer
  • L Orci
چکیده

The route by which water, solutes, and macromolecules traverse the endothelial cell has long been a subject of study for both physiologists and cell biologists. Recent physiologic studies describe a slit-shaped pore (5.1-5.7-nm wide) as the communicating channel, although no channel of such dimensions has been visible in electron microscopic preparations. That this channel should be found within the fenestral diaphragm has long been suggested. In this report, by the aid of a new technique in tissue processing, we are able to demonstrate a possible morphologic correlate within the fenestral diaphragm of fenestrated capillaries. Quick-freezing and deep-etching of whole tissue blocks allows the sublimation of water from the endothelial pores, thus leaving the channels through the diaphragms empty and readily replicated with a platinum-carbon shadow. The structure of the diaphragm was revealed thus to be composed of radial fibrils of 7 nm in diameter, interweaving in a central mesh, and creating by their geometric distribution, wedge-shaped channels around the periphery of the pore. The average channel had a maximum arc length of 5.46 nm. Fenestrated endothelia from various tissues, including endocrine and exocrine pancreas, adrenal cortex, and kidney peritubular capillaries, displayed the same diaphragmatic structure, whereas continuous capillaries in muscle had no such diaphragm. Photographic augmentation of electron micrographs of etched replicas displayed marked enhancement at n = 8, confirming an octagonal symmetry of the fenestral diaphragm. Finally, cationic ferritin, clearly visible as a marker after etching, heavily bound to the flowerlike structure within the fenestral pore. We conclude that the fenestral diaphragm contains the structure responsible for fenestrated capillary permeability and that the communicating channel has the shape of a wedge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms.

PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that t...

متن کامل

Multiple PV1 dimers reside in the same stomatal or fenestral diaphragm.

Several of the endothelium-specific structures that have been involved in microvascular permeability [such as caveolae, transendothelial channels (TECs), vesiculovacuolar organelles (VVOs), and fenestrae] can be provided with either a stomatal or fenestral diaphragm. In the case of fenestrae, the diaphragm has the presumed function of creating a permselective barrier for solutes from blood plas...

متن کامل

The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique

Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin-section study (Roberts, K., M. Gurney-Smith, and ...

متن کامل

PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia.

PV-1 is a novel endothelial protein shown by immunocytochemical tests to be specifically associated with the stomatal diaphragms of caveolae in lung endothelium. Although the highest expression levels of both mRNA and protein are in the lung, PV-1 also has been found to be expressed in other organs. Using a specific antibody to the extracellular domain of PV-1, we have extended the survey on th...

متن کامل

The Chlamydomonas Cell Wall Glycoproteins Analyzed by the Technique and Its Constituent Quick-Freeze, Deep-Etch

Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin-section study (Roberts, K., M. Gurney-Smith, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1985